Q. If $\int \frac{\operatorname{cosec}^2 x}{(\operatorname{cosec} x+\cot x)^{\frac{9}{2}}} d x=(\operatorname{cosec} x-\cot x)^{\frac{7}{2}}\left(\frac{1}{\alpha}+\frac{(\operatorname{cosec} x-\cot x)^2}{11}\right)+C$ where $C$ is constant of integration and $\alpha \in N$, then $\alpha$ is equal to
Integrals
Solution: