Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( log(t+√1+t2)/√1+t2) dt=(1/2)(g(t)2)+C, where C is a constant, then g(2) is equal to :
Q. If
∫
1
+
t
2
l
o
g
(
t
+
1
+
t
2
)
d
t
=
2
1
(
g
(
t
)
2
)
+
C
,
where
C
is a constant, then
g
(
2
)
is equal to :
5078
242
JEE Main
JEE Main 2015
Integrals
Report Error
A
2
lo
g
(
2
+
5
)
21%
B
lo
g
(
2
+
5
)
32%
C
5
1
lo
g
(
2
+
5
)
25%
D
2
1
lo
g
(
2
+
5
)
23%
Solution:
I
=
∫
1
+
t
2
l
o
g
(
t
+
1
+
t
2
)
d
t
∵
d
t
d
(
lo
g
(
t
+
1
+
t
2
)
)
=
1
+
t
2
1
⇒
I
=
2
1
[
lo
g
(
t
+
1
+
t
2
)
]
2
+
C
⇒
g
(
t
)
=
lo
g
(
t
+
1
+
t
2
)
⇒
g
(
2
)
=
lo
g
(
2
+
5
)