Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int \frac{\log\left(t+\sqrt{1+t^{2}}\right)}{\sqrt{1+t^{2}}} dt=\frac{1}{2}\left(g\left(t\right)^{2}\right)+C,$ where $C$ is a constant, then $g(2)$ is equal to :

JEE MainJEE Main 2015Integrals

Solution:

$I=\int \frac{\log \left(t+\sqrt{1+t^{2}}\right)}{\sqrt{1+t^{2}}} d t$
$\because \frac{d}{d t}\left(\log \left(t+\sqrt{1+t^{2}}\right)\right)=\frac{1}{\sqrt{1+t^{2}}}$
$\Rightarrow I=\frac{1}{2}\left[\log \left(t+\sqrt{ \left.1+t^{2}\right)}\right]^{2}+C\right.$
$\Rightarrow g(t)=\log \left(t+\sqrt{1+t^{2}}\right)$
$\Rightarrow g(2)=\log (2+\sqrt{5})$