Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits0∞(( sin x/x))3 d x=A and ∫ limits0∞((x- sin x/x3)) d x=(a A/b), where a and b are relative prime then the value of (a+b) equals
Q. If
0
∫
∞
(
x
s
i
n
x
)
3
d
x
=
A
and
0
∫
∞
(
x
3
x
−
s
i
n
x
)
d
x
=
b
a
A
, where
a
and
b
are relative prime then the value of
(
a
+
b
)
equals
932
81
Integrals
Report Error
A
3
B
4
C
5
D
6
Solution:
I
=
0
∫
∞
x
3
x
−
s
i
n
x
d
x
x
→
3
t
I
=
0
∫
∞
27
t
3
3
t
−
s
i
n
3
t
⋅
3
d
t
I
=
0
∫
∞
9
t
3
3
t
−
3
s
i
n
t
+
4
s
i
n
3
t
d
t
I
=
3
1
0
∫
∞
t
3
t
−
s
i
n
t
d
t
+
9
4
0
∫
∞
t
3
s
i
n
3
t
d
t
I
=
3
1
I
+
9
4
A
3
2
I
=
9
4
A
⇒
I
=
3
2
A
⇒
a
+
b
=
5