Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int\limits_0^{\infty}\left(\frac{\sin x}{x}\right)^3 d x=A$ and $\int\limits_0^{\infty}\left(\frac{x-\sin x}{x^3}\right) d x=\frac{a A}{b}$, where $a$ and $b$ are relative prime then the value of $(a+b)$ equals

Integrals

Solution:

$I=\int\limits_0^{\infty} \frac{x-\sin x}{x^3} d x$
$x \rightarrow 3 t I=\int\limits_0^{\infty} \frac{3 t-\sin 3 t}{27 t^3} \cdot 3 d t$
$I=\int\limits_0^{\infty} \frac{3 t-3 \sin t+4 \sin ^3 t}{9 t^3} d t $
$I=\frac{1}{3} \int\limits_0^{\infty} \frac{t-\sin t}{t^3} d t+\frac{4}{9} \int\limits_0^{\infty} \frac{\sin ^3 t}{t^3} d t$
$I=\frac{1}{3} I+\frac{4}{9} A $
$\frac{2}{3} I=\frac{4 A}{9} \Rightarrow I=\frac{2 A}{3} \Rightarrow a+b=5$