Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (4+x12/(x6-2 x3+2)) d x=(xα/α)+(xβ/γ)+δ x+ c, then the last digit of the number (α-β+γ-δ)99 is equal to (where ' c ' is integration constant)
Q. If
∫
(
x
6
−
2
x
3
+
2
)
4
+
x
12
d
x
=
α
x
α
+
γ
x
β
+
δ
x
+
c
, then the last digit of the number
(
α
−
β
+
γ
−
δ
)
99
is equal to (where '
c
' is integration constant)
63
180
Integrals
Report Error
Answer:
7
Solution:
∫
(
x
6
−
2
x
3
+
2
)
(
x
6
−
2
x
3
+
2
)
(
x
6
+
2
x
3
+
2
)
d
x
=
∫
(
x
6
+
2
x
3
+
2
)
d
x
=
7
x
7
+
2
x
4
+
2
x
+
c
⇒
α
=
7
,
β
=
4
,
γ
=
2
,
δ
=
2
⇒
(
α
−
β
+
γ
−
δ
)
99
=
(
7
−
4
+
2
−
2
)
99
=
3
99
By cyclicity concept,
3
99
has same last digit as
3
3
∴
last digit
=
7
.