Q. If $\int \frac{4+x^{12}}{\left(x^{6}-2 x^{3}+2\right)} d x=\frac{x^{\alpha}}{\alpha}+\frac{x^{\beta}}{\gamma}+\delta x+ c$, then the last digit of the number $(\alpha-\beta+\gamma-\delta)^{99}$ is equal to (where ' $c$ ' is integration constant)
Integrals
Solution: