Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I1 = ∫ limits01 e-x cos2 x dx , I2 = ∫ limits01 e-x2 cos2 x dx and I3 = ∫ limits01 e-x3 dx ; then :
Q. If
I
1
=
0
∫
1
e
−
x
cos
2
x
d
x
,
I
2
=
0
∫
1
e
−
x
2
cos
2
x
d
x
and
I
3
=
0
∫
1
e
−
x
3
d
x
; then :
2122
196
JEE Main
JEE Main 2018
Integrals
Report Error
A
I
2
>
I
3
>
I
1
12%
B
I
2
>
I
1
>
I
3
33%
C
I
3
>
I
2
>
I
1
42%
D
I
3
>
I
1
>
I
2
14%
Solution:
For
x
∈
(
0
,
0
)
:
e
−
x
3
>
e
−
x
2
>
e
−
x
So
I
3
=
0
∫
1
e
−
x
′
d
x
,
I
2
=
0
∫
1
e
−
x
2
cos
2
x
d
x
,
I
1
=
0
∫
1
e
−
x
cos
2
x
d
x
I
2
>
I
1
0
∫
1
e
−
x
3
d
x
>
0
∫
1
e
−
x
2
cos
2
x
d
x
Therefore
I
3
>
I
2
>
I
1