Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $I_1 = \int\limits_0^1 e^{-x} \cos^2 \, x \, dx $ , $I_2 = \int\limits_0^1 e^{-x^2} \cos^2 \, x \, dx $ and $I_3 = \int\limits_0^1 e^{-x^3} \, \, dx $ ; then :

JEE MainJEE Main 2018Integrals

Solution:

For $x \in(0,0)$ :
$e^{-x^{3}}>e^{-x^{2}}>e^{-x}$
So $I_{3}=\int\limits_{0}^{1} e^{-x^{\prime}} d x, I_{2}=\int\limits_{0}^{1} e^{-x^{2}} \cos ^{2} x\, d x, I_{1}=\int\limits_{0}^{1} e^{-x} \cos ^{2} x \,d x$
$I_{2}>I_{1}$
$\int\limits_{0}^{1} e^{-x^{3}} d x>\int\limits_{0}^{1} e^{-x^{2}} \cos ^{2} x d x$
Therefore $I_{3} > I_{2} > I_{1}$