Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If for x, y ∈ R, x>0, y= log 10 x+ log 10 x1 / 3+ log 10 x19+ ldots . . upto ∞ terms and (2+4+6+ ldots+2 y/3+6+9+ ldots .+3 y)=(4/ log 10 x), then the ordered pair ( x , y ) is equal to :
Q. If for
x
,
y
∈
R
,
x
>
0
,
y
=
lo
g
10
x
+
lo
g
10
x
1/3
+
lo
g
10
x
19
+
…
..
upto
∞
terms and
3
+
6
+
9
+
…
.
+
3
y
2
+
4
+
6
+
…
+
2
y
=
l
o
g
10
x
4
, then the ordered pair
(
x
,
y
)
is equal to :
2032
209
JEE Main
JEE Main 2021
Sequences and Series
Report Error
A
(
1
0
6
,
6
)
B
(
1
0
4
,
6
)
C
(
1
0
2
,
3
)
D
(
1
0
6
,
9
)
Solution:
y
=
lo
g
10
x
+
lo
g
10
x
1/3
+
lo
g
10
x
1/9
+
…
∞
=
lo
g
10
(
x
⋅
x
1/3
⋅
x
1/9
…
∞
)
=
lo
g
10
(
x
1
+
3
1
+
9
1
…
∞
)
=
lo
g
10
(
1
−
3
1
1
)
=
lo
g
10
x
3/2
)
∴
y
=
2
3
lo
g
10
x
Now,
2
+
4
+
6
+
…
+
2
y
3
+
6
2
+
6
+
9
+
…
+
3
y
=
l
o
g
10
x
4
⇒
3
(
1
+
2
+
3
+
…
+
y
)
2
(
1
+
2
+
3
+
…
+
y
)
=
l
o
g
10
x
4
⇒
3
2
=
l
o
g
10
x
4
⇒
lo
g
10
x
=
6
⇒
x
=
1
0
6
∴
y
=
2
3
x
6
=
9