Q.
If for $x, y \in R, x>0$,
$y=\log _{10} x+\log _{10} x^{1 / 3}+\log _{10} x^{19}+\ldots . .$ upto $\infty$ terms and $\frac{2+4+6+\ldots+2 y}{3+6+9+\ldots .+3 y}=\frac{4}{\log _{10} x}$, then the ordered pair $( x , y )$ is equal to :
Solution: