Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If for all real triplets (a, b, c), f(x ) = a + bx + cx2; then ∫ limits10 f(x)dx is equal to :
Q. If for all real triplets (a, b, c),
f
(
x
)
=
a
+
b
x
+
c
x
2
; then
0
∫
1
f(x)dx is equal to :
1553
226
JEE Main
JEE Main 2020
Integrals
Report Error
A
2
{
3
f
(
1
)
+
2
f
(
2
1
)
}
11%
B
3
1
{
f
(
0
)
+
f
(
2
1
)
}
18%
C
2
1
{
f
(
1
)
+
3
f
(
2
1
)
}
20%
D
6
1
{
f
(
0
)
+
f
(
1
)
+
4
f
(
2
1
)
}
50%
Solution:
ƒ
(
x
)
=
a
+
b
x
+
c
x
2
0
∫
1
f
(
x
)
d
x
[
a
x
+
2
b
x
2
+
3
c
x
3
]
0
1
=
a
+
2
b
+
3
c
=
6
1
[
6
a
+
3
b
+
c
]
=
6
1
[
f
(
0
)
+
f
(
1
)
+
4
f
(
2
1
)
]