Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If for all real triplets (a, b, c), $f(x ) = a + bx + cx^2$; then $\int\limits^{1}_{0}$ f(x)dx is equal to :

JEE MainJEE Main 2020Integrals

Solution:

$ƒ\left(x\right) = a + bx + cx^{2}$
$\int\limits^{1}_{{0}}f(x)dx$$\left[ax+\frac{bx^{2}}{2}+\frac{cx^{3}}{3}\right]^{^1}_{_{_0}}$
$=a+\frac{b}{2}+\frac{c}{3}=\frac{1}{6}\left[6a+3b+c\right]$
$=\frac{1}{6}\left[f \left(0\right)+f \left(1\right)+4f \left(\frac{1}{2}\right)\right]$