Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = x tan-1 x, then f' (1) equals
Q. If
f
(
x
)
=
x
tan
−
1
x
,
then
f
′
(
1
)
equals
1888
181
Limits and Derivatives
Report Error
A
2
1
+
4
π
62%
B
−
2
1
+
4
π
19%
C
−
2
1
−
4
π
11%
D
2
1
−
4
π
7%
Solution:
f
′
(
x
)
=
1
+
x
2
x
+
tan
−
1
x
⇒
f
′
(
1
)
=
2
1
+
tan
−
1
1
=
2
1
+
4
π
.