Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = begincases (x2 + 3x - 10/x2 + 2x -15) , textwhen x x ≠ - 5 a , textwhen x = - 5 endcases is continuous at x = -5, then the value of âaâ will be
Q. If
f
(
x
)
=
{
x
2
+
2
x
−
15
x
2
+
3
x
−
10
,
a
,
when
xx
=
−
5
when
x
=
−
5
is continuous at
x
=
−
5
, then the value of ‘
a
’ will be
2492
244
BITSAT
BITSAT 2013
Report Error
A
3/2
B
7/8
C
8/7
D
2/3
Solution:
x
→
−
5
lim
f
(
x
)
=
(
x
+
5
)
(
x
−
3
)
(
x
−
2
)
(
x
+
5
)
=
−
8
−
7
=
8
7