Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x) = \begin{cases} \frac{x^2 + 3x - 10}{x^2 + 2x -15} , & \text{when} x x \neq - 5 \\ a , & \text{when} x = - 5 \end{cases} $ is continuous at $x = -5$, then the value of ‘$a$’ will be

BITSATBITSAT 2013

Solution:

$\displaystyle\lim _{x \rightarrow-5} f(x)=\frac{(x-2)(x+5)}{(x+5)(x-3)}$
$=\frac{-7}{-8}=\frac{7}{8}$