Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= begincasesx2-1, 0 < x < 2 2 x+3, 2 ≤ x < 3 endcases the quadratic equation whose roots are displaystyle lim x arrow 2- f (x) and displaystyle lim x arrow 2+ f (x) is
Q. If
f
(
x
)
=
{
x
2
−
1
,
2
x
+
3
,
0
<
x
<
2
2
≤
x
<
3
the quadratic equation whose roots are
x
→
2
−
lim
f
(
x
)
and
x
→
2
+
lim
f
(
x
)
is
694
125
KCET
KCET 2022
Limits and Derivatives
Report Error
A
x
2
−
14
x
+
49
=
0
19%
B
x
2
−
6
x
+
9
=
0
24%
C
x
2
−
10
x
+
21
=
0
57%
D
x
2
−
7
x
+
8
=
0
0%
Solution:
α
=
x
→
2
−
lim
f
(
x
)
=
x
→
2
lim
x
2
−
1
=
3
β
=
x
→
2
+
lim
f
(
x
)
=
x
→
2
lim
2
x
+
3
=
7
x
2
−
(
α
+
β
)
x
+
α
β
=
0
x
2
−
10
x
+
21
=
0