Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x)= \begin{cases}x^{2}-1, & 0 < x < 2 \\ 2 x+3, & 2 \leq x < 3\end{cases}$
the quadratic equation whose roots are $\displaystyle\lim _{x \rightarrow 2^{-}} f (x)$ and $\displaystyle\lim _{x \rightarrow 2^{+}} f (x)$ is

KCETKCET 2022Limits and Derivatives

Solution:

$\alpha=\displaystyle\lim _{x \rightarrow 2^{-}} f(x)=\displaystyle\lim _{x \rightarrow 2} x^{2}-1=3$
$\beta=\displaystyle\lim _{x \rightarrow 2^{+}} f(x)=\displaystyle\lim _{x \rightarrow 2} 2 x+3=7$
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-10 x+21=0$