Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=|[ sin x-2 √2 cos x+2]+(1/1+t2)| where x, t ∈ R and g(t) is the minimum value of f(x) for x ∈ R, then the value of ∫ limits-∞∞ g(t) d(t) is [Note: [ k ] denotes greatest integer less than or equal to k.]
Q. If
f
(
x
)
=
∣
∣
[
sin
x
−
2
2
cos
x
+
2
]
+
1
+
t
2
1
∣
∣
where
x
,
t
∈
R
and
g
(
t
)
is the minimum value of
f
(
x
)
for
x
∈
R
, then the value of
−
∞
∫
∞
g
(
t
)
d
(
t
)
is
[Note:
[
k
]
denotes greatest integer less than or equal to
k
.]
112
92
Integrals
Report Error
A
1
B
2
C
4
π
D
2
π
Solution:
f
(
x
)
=
∣
∣
[
sin
x
−
2
2
cos
x
+
2
]
+
1
+
t
2
1
∣
∣
,
x
,
t
∈
R
−
1
≤
sin
x
−
2
2
cos
x
+
2
≤
5
∴
[
sin
x
−
2
2
cos
x
+
2
]
=
−
1
,
0
,
1
,
2
,
3
,
4
,
5
g
(
t
)
=
Min
.
(
f
(
x
))
=
Min
.
(
∣
∣
−
1
+
1
+
t
2
1
∣
∣
,
1
+
t
2
1
,
1
+
1
+
t
2
1
,
…
.5
+
1
+
t
2
1
)
∴
−
∞
∫
∞
g
(
t
)
d
t
=
2
0
∫
∞
g
(
t
)
d
t
=
2
(
0
∫
1
(
1
−
1
+
t
2
1
)
d
t
+
1
∫
∞
1
+
t
2
1
d
t
)
=
2.