Q.
If $f(x)=\left|[\sin x-2 \sqrt{2} \cos x+2]+\frac{1}{1+t^2}\right|$ where $x, t \in R$ and $g(t)$ is the minimum value of $f(x)$ for $x \in R$, then the value of $\int\limits_{-\infty}^{\infty} g(t) d(t)$ is
[Note: $[ k ]$ denotes greatest integer less than or equal to $k$.]
Integrals
Solution: