Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= log ( (1+x/1-x) ),-1<x<1, then f( (3x+x3/1+3x2) )-f( (2x/1+x2) ) is
Q. If
f
(
x
)
=
lo
g
(
1
−
x
1
+
x
)
,
−
1
<
x
<
1
,
then
f
(
1
+
3
x
2
3
x
+
x
3
)
−
f
(
1
+
x
2
2
x
)
is
1781
207
KEAM
KEAM 2008
Report Error
A
[
f
(
x
)]
3
B
[
f
(
x
)]
2
C
−
f
(
x
)
D
f
(
x
)
E
3
f
(
x
)
Solution:
Given,
f
(
x
)
=
lo
g
(
1
−
x
1
+
x
)
∴
f
(
1
+
3
x
2
3
x
+
x
3
)
−
f
(
1
+
x
2
2
x
)
=
lo
g
(
1
−
(
1
+
3
x
2
3
x
+
x
3
)
1
+
(
1
+
3
x
2
3
x
+
x
3
)
)
−
lo
g
(
1
−
1
+
x
2
2
x
1
+
1
+
x
2
2
x
)
=
lo
g
(
1
−
x
1
+
x
)
3
−
lo
g
(
1
−
x
1
+
x
)
2
=
lo
g
(
1
−
x
1
+
x
)
=
f
(
x
)