Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f(x)=\log \left( \frac{1+x}{1-x} \right),-1
KEAMKEAM 2008

Solution:

Given, $ f(x)=\log \left( \frac{1+x}{1-x} \right) $
$ \therefore $ $ f\left( \frac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)-f\left( \frac{2x}{1+{{x}^{2}}} \right) $
$=\log \left( \frac{1+\left( \frac{3x+{{x}^{3}}}{1+3x2} \right)}{1-\left( \frac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)} \right)-\log \left( \frac{1+\frac{2x}{1+{{x}^{2}}}}{1-\frac{2x}{1+{{x}^{2}}}} \right) $
$=\log {{\left( \frac{1+x}{1-x} \right)}^{3}}-\log {{\left( \frac{1+x}{1-x} \right)}^{2}} $
$=\log \left( \frac{1+x}{1-x} \right) $
$=f(x) $