We have, g(x)=[f(x)]2+[f′(x)]2
Differentiate the function g(x) ⇒g′(x)=2f(x)f′(x)+2f′(x)f′′(x), use chain rule =2f′(x)[f(x)+f′′(x)]=2f′(x)(0)=0, use the given condition
Hence g(x) is a constant function ⇒g(x)=c, constant
But g(3)=8,sog(x)=8, for all real x
Hence g(8)=8