We have, $g(x)=[f(x)]^{2}+\left[f^{\prime}(x)\right]^{2}$
Differentiate the function $g ( x )$
$\Rightarrow g ^{\prime}( x )=2 f ( x ) f ^{\prime}( x )+2 f ^{\prime}( x ) f ^{\prime \prime}( x )$, use chain rule
$=2 f ^{\prime}( x )\left[ f ( x )+ f ^{\prime \prime}( x )\right]=2 f ^{\prime}( x )(0)=0$, use the given condition
Hence $g ( x )$ is a constant function
$\Rightarrow g ( x )= c$, constant
But $g (3)=8, \operatorname{so} g ( x )=8$, for all real $x$
Hence $g(8)=8$