Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = ∫ limitssin x2xcos(t3)dt, then f'x is equal to
Q. If
f
(
x
)
=
2
x
∫
s
in
x
cos
(
t
3
)
d
t
, then
f
′
x
is equal to
2014
266
KEAM
KEAM 2012
Integrals
Report Error
A
cos
(
s
in
x
)
cos
x
−
2
cos
(
8
x
3
)
B
s
in
(
s
i
n
3
x
)
s
in
−
2
s
in
(
8
x
3
)
C
cos
(
co
s
3
x
)
cos
x
−
2
cos
(
x
3
)
D
cos
(
s
i
n
3
x
)
−
cos
(
8
x
3
)
E
s
in
(
s
i
n
3
x
)
cos
x
−
2
s
in
(
8
x
3
)
Solution:
Given,
f
(
x
)
=
∫
2
x
s
i
n
x
cos
t
3
d
t
Using Leibnitz's rule
f
′
(
x
)
=
cos
(
sin
3
x
)
d
x
d
(
sin
x
)
−
cos
(
2
x
)
3
d
x
d
(
2
x
)
=
cos
(
sin
3
x
)
(
cos
x
)
−
cos
8
x
3
(
2
)