Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f\left(x\right) = \int\limits^{sin\,x}_{2x}cos\left(t^{3}\right)dt$, then $f'{x}$ is equal to

KEAMKEAM 2012Integrals

Solution:

Given, $f(x)=\int_{2 x}^{\sin x} \cos t^{3} d t$
Using Leibnitz's rule
$f^{\prime}(x)=\cos \left(\sin ^{3} x\right) \frac{d}{d x}(\sin x)$
$-\cos (2 x)^{3} \frac{d}{d x}(2 x)$
$=\cos \left(\sin ^{3} x\right)(\cos x)-\cos 8 x^{3}(2)$