Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f (x)=f (a-x), then ∫ limits0a x f (x)dx is equal to
Q. If
f
(
x
)
=
f
(
a
−
x
)
, then
0
∫
a
x
f
(
x
)
d
x
is equal to
7274
190
WBJEE
WBJEE 2009
Integrals
Report Error
A
0
∫
a
f
(
x
)
d
x
30%
B
2
a
2
0
∫
a
f
(
x
)
d
x
60%
C
2
a
0
∫
a
f
(
x
)
d
x
0%
D
−
2
a
0
∫
a
f
(
x
)
d
x
10%
Solution:
Let
I
=
0
∫
a
x
f
(
x
)
d
x
…
(
i
)
⇒
I
=
0
∫
a
(
a
−
x
)
f
(
a
−
x
)
d
x
I
=
0
∫
a
(
a
−
x
)
f
(
x
)
d
x
[
∵
f
(
x
)
=
f
(
a
−
x
)
g
i
v
e
n
]
⇒
I
=
a
0
∫
a
f
(
x
)
d
x
−
0
∫
a
x
f
(
x
)
d
x
…
(
ii
)
On adding Eqs.
(
i
)
and
(
ii
)
, we get
⇒
2
I
=
a
0
∫
a
f
(
x
)
d
x
⇒
I
=
2
a
0
∫
a
f
(
x
)
d
x