Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f (x)=f (a-x)$, then $\int\limits_{0}^{a} x f \left(x\right)dx$ is equal to

WBJEEWBJEE 2009Integrals

Solution:

Let $I= \int\limits_{0}^{a} xf\left(x\right)dx \ldots\left(i\right)$

$\Rightarrow I=\int\limits_{0}^{a}\left(a-x\right)f \left(a-x\right)dx$

$I=\int\limits^{a}_{0}\left(a-x\right)f \left(x\right)dx \left[\because f \left(x\right)=f \left(a-x\right)given\right]$

$\Rightarrow I=a\int\limits_{0}^{a}f \left(x\right)dx-\int\limits^{a}_{0} xf \left(x\right)dx \ldots\left(ii\right)$

On adding Eqs. $\left(i\right)$ and $\left(ii\right)$, we get

$\Rightarrow 2I=a\int\limits_{0}^{a} f \left(x\right)dx$

$\Rightarrow I=\frac{a}{2} \int\limits_{0}^{a}f \left(x\right)dx$