Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=(ex/1+ex), I1=∫ limitsf(-a)f(a) x g(x(1-x)) d x and I2=∫ limitsf(-a)f(a) g(x(1-x)) d x, then find the value of (I2/I1).
Q. If
f
(
x
)
=
1
+
e
x
e
x
,
I
1
=
f
(
−
a
)
∫
f
(
a
)
xg
(
x
(
1
−
x
))
d
x
and
I
2
=
f
(
−
a
)
∫
f
(
a
)
g
(
x
(
1
−
x
))
d
x
, then find the value of
I
1
I
2
.
220
166
Integrals
Report Error
Answer:
2.00
Solution:
f
(
a
)
+
f
(
−
a
)
=
1
I
1
=
f
(
−
a
)
∫
f
(
a
)
xg
(
x
(
1
−
x
))
d
x
I
1
=
f
(
−
a
)
∫
f
(
a
)
(
1
−
x
)
g
((
1
−
x
)
x
)
d
x
⇒
I
1
+
I
1
=
f
(
−
a
)
∫
f
(
a
)
g
(
x
(
1
−
x
))
d
x
⇒
2
I
1
=
I
2
⇒
I
1
I
2
=
2