Q. If $f(x)=\frac{e^{x}}{1+e^{x}}, I_{1}=\int\limits_{f(-a)}^{f(a)} x g(x(1-x)) d x$ and $I_{2}=\int\limits_{f(-a)}^{f(a)} g(x(1-x)) d x$, then find the value of $\frac{I_{2}}{I_{1}}$.
Integrals
Solution:
Solution: