Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = 1 + nx + (n(n-1)/2)x2+(n(n-1)(n-2)/6)x3+.........+xn then f''(1) =
Q. If
f
(
x
)
=
1
+
n
x
+
2
n
(
n
−
1
)
x
2
+
6
n
(
n
−
1
)
(
n
−
2
)
x
3
+
.........
+
x
n
then
f
′′
(
1
)
=
4343
218
KCET
KCET 2009
Continuity and Differentiability
Report Error
A
n
(
n
−
1
)
2
n
20%
B
n
(
n
−
1
)
2
n
28%
C
(
n
−
1
)
2
n
−
1
29%
D
⇒
f
′′
(
1
)
=
n
(
n
−
1
)
2
n
−
2
24%
Solution:
Given,
f
(
x
)
=
1
+
n
x
+
2
!
n
(
n
−
1
)
x
2
+
3
!
n
(
n
−
1
)
(
n
−
2
)
x
3
+
…
+
x
n
⇒
f
(
x
)
=
(
1
+
x
)
n
⇒
f
′
(
x
)
=
n
(
1
+
x
)
n
−
1
⇒
f
′′
(
x
)
=
n
(
n
−
1
)
(
1
+
x
)
n
−
2
⇒
f
′′
(
1
)
=
n
(
n
−
1
)
2
n
−
2