Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x) = 1 + nx +\frac {n(n-1)}{2}x^2+\frac{n(n-1)(n-2)}{6}x^3+.........+x^n$ then $f''(1)$ =

KCETKCET 2009Continuity and Differentiability

Solution:

Given, $ f(x)= 1+n x+\frac{n(n-1)}{2 !} x^{2} +\frac{n(n-1)(n-2)}{3 !} x^{3}+\ldots+x^{n} $
$\Rightarrow f(x)=(1+x)^{n} $
$ \Rightarrow f'(x)=n(1+x)^{n-1} $
$ \Rightarrow f''(x)=n(n-1)(1+x)^{n-2} $
$ \Rightarrow f''(1)=n(n-1) 2^{n-2}$