Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f: R arrow[-(π/4), (π/2)) is a function defined by f ( x )= tan -1( x 4- x 2-(7/4)+ tan -1 α) and f is surjective then
Q. If
f
:
R
→
[
−
4
π
,
2
π
)
is a function defined by
f
(
x
)
=
tan
−
1
(
x
4
−
x
2
−
4
7
+
tan
−
1
α
)
and
f
is surjective then
540
120
Inverse Trigonometric Functions
Report Error
A
cos
−
1
(
1
+
α
2
1
−
α
2
)
=
2
B
α
+
α
1
=
2
cosec
2
C
sin
−
1
(
α
2
+
1
2
α
)
=
π
−
2
D
tan
−
1
(
α
2
−
1
2
α
)
=
2
−
π
Solution:
f
(
x
)
=
tan
−
1
(
x
4
−
x
2
+
4
1
−
2
+
tan
−
1
α
)
=
tan
−
1
(
(
x
2
−
2
1
)
2
+
tan
−
1
α
−
2
)
For '
f
' to be surjective,
tan
−
1
α
−
2
=
−
1
⇒
α
=
tan
1
Now, verify the options.