Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f : R \rightarrow\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$ is a function defined by $f ( x )=\tan ^{-1}\left( x ^4- x ^2-\frac{7}{4}+\tan ^{-1} \alpha\right)$ and $f$ is surjective then

Inverse Trigonometric Functions

Solution:

$f(x)=\tan ^{-1}\left(x^4-x^2+\frac{1}{4}-2+\tan ^{-1} \alpha\right)=\tan ^{-1}\left(\left(x^2-\frac{1}{2}\right)^2+\tan ^{-1} \alpha-2\right)$
For ' $f$ ' to be surjective, $\tan ^{-1} \alpha-2=-1 \Rightarrow \alpha=\tan 1$ Now, verify the options.