Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(a+b-x)=f(x), then ∫ limitsab x f(x) d x is equal to
Q. If
f
(
a
+
b
−
x
)
=
f
(
x
)
, then
a
∫
b
x
f
(
x
)
d
x
is equal to
132
97
Integrals
Report Error
A
2
a
+
b
a
∫
b
f
(
b
−
x
)
d
x
B
2
a
+
b
a
∫
b
f
(
x
)
d
x
C
2
b
−
a
a
∫
b
f
(
x
)
d
x
D
2
a
+
b
a
∫
b
f
(
b
+
x
)
d
x
Solution:
Let
I
=
a
∫
b
x
f
(
x
)
d
x
....(1)
Also,
I
=
a
∫
b
(
a
+
b
−
x
)
f
(
a
+
b
−
x
)
d
x
....(2)
(Using King property)
∴
(
1
)
+
(
2
)
⇒
2
I
=
a
∫
b
(
a
+
b
−
x
+
x
)
f
(
x
)
d
x
So,
I
=
(
2
a
+
b
)
a
∫
b
f
(
x
)
d
x
[As
f
(
a
+
b
−
x
)
=
f
(
x
)
(Given)]