Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(a+b-x)=f(x)$, then $\int\limits_a^b x f(x) d x$ is equal to

Integrals

Solution:

Let $I=\int\limits_a^b x f(x) d x$ ....(1)
Also, $ I=\int\limits_a^b(a+b-x) f(a+b-x) d x$ ....(2)
(Using King property)
$\therefore (1)+(2) \Rightarrow 2 I=\int\limits_a^b(a+b-x+x) f(x) d x$
So, $ I=\left(\frac{a+b}{2}\right) \int\limits_a^b f(x) d x$
[As $f ( a + b - x )= f ( x )$ (Given)]