Thank you for reporting, we will resolve it shortly
Q.
If $f(a+b-x)=f(x)$, then $\int\limits_a^b x f(x) d x$ is equal to
Integrals
Solution:
Let $I=\int\limits_a^b x f(x) d x$ ....(1)
Also, $ I=\int\limits_a^b(a+b-x) f(a+b-x) d x$ ....(2)
(Using King property)
$\therefore (1)+(2) \Rightarrow 2 I=\int\limits_a^b(a+b-x+x) f(x) d x$
So, $ I=\left(\frac{a+b}{2}\right) \int\limits_a^b f(x) d x$
[As $f ( a + b - x )= f ( x )$ (Given)]