Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle ∑ k = 0100((k/k + 1))( 100 textCk)=(a ⋅ 2100 + b/c) , where a,b,c∈ N , then the least value of ((a + b + c/100)) is equal to
Q. If
k
=
0
∑
100
(
k
+
1
k
)
(
_
100
C
k
)
=
c
a
⋅
2
100
+
b
, where
a
,
b
,
c
∈
N
, then the least value of
(
100
a
+
b
+
c
)
is equal to
2850
213
NTA Abhyas
NTA Abhyas 2020
Binomial Theorem
Report Error
Answer:
2.01
Solution:
Let
S
=
k
=
0
∑
100
(
k
+
1
k
)
(
(
_
100
C
)
k
)
=
k
=
0
∑
100
(
k
+
1
k
+
1
−
1
)
(
_
100
C
)
k
=
k
=
0
∑
100
_
100
C
k
−
k
=
0
∑
100
k
+
1
1
_
100
C
k
=
2
100
−
101
1
k
=
0
∑
100
k
+
1
101
_
100
C
k
=
2
100
−
101
1
k
=
0
∑
100
_
101
C
k
+
1
=
2
100
−
101
1
(
2
101
−
1
)
=
101
101
⋅
2
100
−
2
101
+
1
=
101
99
⋅
2
100
+
1
So,
a
=
99
,
b
=
1
,
c
=
101
Hence,
(
100
a
+
b
+
c
)
l
e
a
s
t
=
2.01