Q. If $\displaystyle \sum _{k = 0}^{100}\left(\frac{k}{k + 1}\right)\left(\_{}^{100}\text{C}_{k}^{}\right)=\frac{a \cdot 2^{100} + b}{c}$ , where $a,b,c\in N$ , then the least value of $\left(\frac{a + b + c}{100}\right)$ is equal to
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Solution: