We have x→0lim(1+x+xf(x))1/x=e3 ⇒x→0lim(1+x(1+x2f(x)))1/x=e3 ⇒x→0lim[(1+xx2+f(x))x2+f(x)x]xx2+f(x)x1=e3 ⇒x2x2+f(x)=3 ⇒f(x)=2x2
Therefore ∫f(x)logexdx=2∫x2logexdx =2[3x3logex−∫3x3⋅x1dx]( By Parts ) =32x3logex−92x3+c =32x3(logex−31)+c