Q.
If $ \displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}$ exists finitely and $ \displaystyle \lim _{x \rightarrow 0}\left(1+x+\frac{f(x)}{x}\right)^{1 / x}=e^{3}$,
then $\int f(x) \log _{e} x d x$ is equal to
Integrals
Solution: