∫sin7x⋅cos2x1−7cos2xdx=sin7xg(x)+c,=∫sin7xcos2x1dx−7∫sin7xcos2xcos2xdx=∫cosec7xsec2xdx−7∫cosec7xdx
Assume, I=∫cosec7xsec2xdx
By integration by parts I=cosec7xtanx−∫7cosec7xdx=sin7xtanx+7∫sin7x1+c
So, ∫cosec7xsec2xdx−7∫cosec7xdx=cosec7xtanx+∫7cosec7xdx−∫7cosec7xdx
Hence, g(x)=tanx g′(x)=sec2x g′′(x)=2sec2xtanx g′(0)+g′′(4π)=5