Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int \frac{1-7 \cos ^2 x}{\sin ^7 x \cdot \cos ^2 x} d x=\frac{g^{(x)}}{\sin ^7 x}+c$, then $g^{\prime}(0)+g^{\prime \prime}\left(\frac{\pi}{4}\right)$ is

NTA AbhyasNTA Abhyas 2022

Solution:

$ \begin{array}{l} \int \frac{1-7 \cos ^2 x}{\sin ^7 x \cdot \cos ^2 x} d x=\frac{g(x)}{\sin ^7 x}+c, \\ =\int \frac{1}{\sin ^7 x \cos ^2 x} d x-7 \int \frac{\cos ^2 x}{\sin ^7 x \cos ^2 x} d x \\ =\int \operatorname{cosec}^7 x \sec ^2 x d x-7 \int \operatorname{cosec}^7 x d x \end{array} $
Assume, $I=\int \operatorname{cosec}^7 x \sec ^2 x d x$
By integration by parts
$ \begin{array}{l} I=\operatorname{cosec}^7 x \tan x-\int 7 \operatorname{cosec}^7 x d x \\ =\frac{\tan x}{\sin ^7 x}+7 \int \frac{1}{\sin ^7 x}+c \end{array} $
So,
$ \int \operatorname{cosec}^7 x \sec ^2 x d x-7 \int \operatorname{cosec}^7 x d x=\operatorname{cosec}^7 x \tan x+\int 7 \operatorname{cosec}^7 x d x-\int 7 \operatorname{cosec}^7 x d x $
Hence,
$ g(x)=\tan x $
$ g^{\prime}(x)=\sec ^2 x $
$g^{\prime \prime}(x)=2 \sec ^2 x \tan x$
$ g^{\prime}(0)+g^{\prime \prime}\left(\frac{\pi}{4}\right)=5 $