Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If cos 2 B=( cos (A+C)/ cos (A-C)), then tan A, tan B, tan C are in
Q. If
cos
2
B
=
c
o
s
(
A
−
C
)
c
o
s
(
A
+
C
)
, then
tan
A
,
tan
B
,
tan
C
are in
85
145
Trigonometric Functions
Report Error
A
A.P.
B
G.P.
C
H.P.
D
none of these
Solution:
1
c
o
s
2
B
=
c
o
s
(
A
−
C
)
c
o
s
(
A
+
C
)
Applying componendo and dividendo, we get
1
+
c
o
s
2
B
1
−
c
o
s
2
B
=
c
o
s
(
A
−
C
)
+
c
o
s
(
A
+
C
)
c
o
s
(
A
−
C
)
−
c
o
s
(
A
+
C
)
or
2
c
o
s
2
B
2
s
i
n
2
B
=
2
c
o
s
A
c
o
s
C
2
s
i
n
A
s
i
n
C
or
tan
2
B
=
tan
A
tan
C
Thus,
tan
A
,
tan
B
,
tan
C
are in
G
.
P
.