Thank you for reporting, we will resolve it shortly
Q.
If $\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}$, then $\tan A, \tan B, \tan C$ are in
Trigonometric Functions
Solution:
$\frac{\cos 2 B}{1}=\frac{\cos (A+C)}{\cos (A-C)}$
Applying componendo and dividendo, we get
$\frac{1-\cos 2 B}{1+\cos 2 B}=\frac{\cos (A-C)-\cos (A+C)}{\cos (A-C)+\cos (A+C)}$
or $\frac{2 \sin ^{2} B}{2 \cos ^{2} B}=\frac{2 \sin A \sin C}{2 \cos A \cos C}$
or $\tan ^{2} B=\tan A \tan C$
Thus, $\tan A, \tan B, \tan C$ are in $G.P$.