Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Cr stands for nCr, then the sum of the series (2((n/2))!((n/2))!/n!) [C02-2C12+3C22-....+(-1)n(n+1)Cn2], where n is an even positive integer, is
Q. If
C
r
stands for
n
C
r
, then the sum of the series
n
!
2
(
2
n
)
!
(
2
n
)
!
[
C
0
2
−
2
C
1
2
+
3
C
2
2
−
....
+
(
−
1
)
n
(
n
+
1
)
C
n
2
]
, where
n
is an even positive integer, is
2519
249
Binomial Theorem
Report Error
A
(
−
1
)
n
/2
(
n
+
2
)
36%
B
(
−
1
)
n
(
n
+
1
)
28%
C
(
−
1
)
n
/2
(
n
+
1
)
31%
D
None of these
6%
Solution:
We have,
C
0
2
−
2
C
1
2
+
3
C
2
2
+
4
C
3
2
+
.....
+
(
−
1
)
n
(
n
+
1
)
C
n
2
=
[
C
0
2
−
C
1
2
+
C
2
2
−
C
3
2
+
...
+
(
−
1
)
n
C
n
2
]
−
[
C
1
2
−
2
C
3
2
+
3
C
3
2
−
....
+
(
−
1
)
n
C
n
2
]
=
(
−
1
)
n
/2
(
2
n
)
!
(
2
n
)
n
!
−
(
−
1
)
2
n
−
1
2
n
(
2
n
)
!
(
2
n
)
!
n
!
=
(
−
1
)
n
/2
(
2
n
)
!
(
2
n
)
!
n
!
(
1
+
2
n
)
∴
n
!
2
(
2
n
)
!
(
2
n
)
!
[
C
0
2
−
2
C
1
2
+
3
C
2
2
−
.....
+
(
1
)
r
(
n
+
1
)
C
n
2
]
=
n
!
2
(
2
n
)
!
(
2
n
)
!
(
−
1
)
n
/2
(
2
n
)
!
(
2
n
)
!
n
!
2
(
n
+
2
)
=
(
−
1
)
n
/2
(
n
+
2
)