Q. If $C_r$ stands for $ {}^nC_r$, then the sum of the series $\frac{2\bigg(\frac{n}{2}\bigg)!\bigg(\frac{n}{2}\bigg)!}{n!} [C_0^2-2C_1^2+3C_2^2-....+(-1)^n(n+1)C_n^2]$, where $n$ is an even positive integer, is
Binomial Theorem
Solution: