y2=a2x(a−x) y=±axa−x
Required area =2∫0aaxa−xdx
Put x=asin2θ⇒dx=a(2sinθcosθ)dθ
Also, θ=sin−1ax,
Thus when, x=0⇒θ=(sin)−1(0)=0 and when, x=a⇒θ=(sin)−1(aa)=2π
Area =2∫0(π)/2aa(sin)2θa−a(sin)2θ(2asinθcosθ)dθ =2∫0(π)/2aa(sin)2θa(1−(sin)2θ)(2asinθcosθ)dθ
Using, 1−sin2θ=cos2θ, we get
Area =2∫0(π)/2a(sin)2θ(cos)2θ(2asinθcosθ)dθ =2∫0(π)/2asinθcosθ(2asinθcosθ)dθ =2a2∫0π/22cos2θdθ
Now, by using cos2θ=2cos2θ−1,⇒1+cos2θ=2cos2θ, we have
Area =2a2∫0(π)/2(1+cos2θ)dθ =2a2[θ+2sin2θ]0π/2 =2a2[2π+2sinπ−0]=a2π
Given area is kπa2, hence, on comparing, we get k=1