Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If area bounded by the curve xy2=a2(a - x) and the y -axis is kπ a2 then find k .
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If area bounded by the curve $xy^{2}=a^{2}\left(a - x\right)$ and the $y$ -axis is $k\pi a^{2}$ then find $k$ .
NTA Abhyas
NTA Abhyas 2022
A
B
C
D
Solution:
$y^{2}=a^{2}\frac{\left(a - x\right)}{x}$
$y=\pm a\sqrt{\frac{a - x}{x}}$
Required area $=2\displaystyle \int _{0}^{a}a\sqrt{\frac{a - x}{x}}dx$
Put $x=asin^{2}\theta $ $\Rightarrow dx=a\left(2 sin \theta cos \theta \right)d\theta $
Also, $\theta =sin^{- 1}\sqrt{\frac{x}{a}},$
Thus when, $x=0\Rightarrow \theta =\left(sin\right)^{- 1}\left(0\right)=0$ and when, $x=a\Rightarrow \theta =\left(sin\right)^{- 1}\left(\frac{a}{a}\right)=\frac{\pi }{2}$
Area $=2\displaystyle \int _{0}^{\left(\pi \right)/2}a\sqrt{\frac{a - a \left(sin\right)^{2} \theta }{a \left(sin\right)^{2} \theta }}\left(2 a sin \theta cos \theta \right)d\theta $
$=2\displaystyle \int _{0}^{\left(\pi \right)/2}a\sqrt{\frac{a \left(1 - \left(sin\right)^{2} \theta \right)}{a \left(sin\right)^{2} \theta }}\left(2 a sin \theta cos \theta \right)d\theta $
Using, $1-sin^{2}\theta =cos^{2}\theta ,$ we get
Area $=2\displaystyle \int _{0}^{\left(\pi \right)/2}a\sqrt{\frac{\left(cos\right)^{2} \theta }{\left(sin\right)^{2} \theta }}\left(2 a sin \theta cos \theta \right)d\theta $
$=2\displaystyle \int _{0}^{\left(\pi \right)/2}a\frac{cos \theta }{sin \theta }\left(2 a sin \theta cos \theta \right)d\theta $
$=2a^{2}\displaystyle \int _{0}^{\pi /2}2cos^{2}\theta d\theta $
Now, by using $cos2\theta =2cos^{2}\theta -1,$ $\Rightarrow 1+cos2\theta =2cos^{2}\theta ,$ we have
Area $=2a^{2}\displaystyle \int _{0}^{\left(\pi \right)/2}\left(1 + cos 2 \theta \right)d\theta $
$=2a^{2}\left[\theta + \frac{sin 2 \theta }{2}\right]_{0}^{\pi /2}$
$=2a^{2}\left[\frac{\pi }{2} + \frac{sin\pi }{2} - 0\right]=a^{2}\pi $
Given area is $k\pi a^{2},$ hence, on comparing, we get
$k=1$