Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If abc ≠ 0 and | beginmatrix1+a&1&1 1&1+b&1 1&1&1+c endmatrix|=0, then (1/a)+(1/b)+(1/c)=
Q. If abc
=
0
and
∣
∣
1
+
a
1
1
1
1
+
b
1
1
1
1
+
c
∣
∣
=
0
, then
a
1
+
b
1
+
c
1
=
2039
233
Determinants
Report Error
A
1
38%
B
2
25%
C
−
1
22%
D
−
3
16%
Solution:
Δ
=
(
1
+
a
)
(
b
+
c
+
b
c
)
−
c
−
b
=
0
⇒
ab
c
[
1
+
a
1
+
b
1
+
c
1
]
=
0
Since, abc
=
0
So,
1
+
a
1
+
b
1
+
c
1
=
0
⇒
a
1
+
b
1
+
c
1
=
−
1