Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If abc $\ne 0$ and $\left|\begin{matrix}1+a&1&1\\ 1&1+b&1\\ 1&1&1+c\end{matrix}\right|=0$, then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=$

Determinants

Solution:

$\Delta=\left(1+a\right)\left(b+c+bc\right)-c-b=0$
$\Rightarrow \quad abc \left[1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]=0$
Since, abc $\ne0$
So, $1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$ $\quad$ $\Rightarrow \quad\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=-1$